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I. 0 SUHHARY

This report documents a development effort designed to achieve a corro-

sion resistant improved fracture toughness bearing alloy. At the outset of

the program the decision was made to modify a 14Cr steel (AMS 5749) by reduc-

ing its carbon level to a point where carburizing became feasible. By creat-

ing a bihardness material, it was felt that the requisite conditions for a

fracture-tough bearing material could be achieved. In addition, the use of

a high chromium content material to achieve this would provide the desired

corrosion resistance. Lastly, it was anticipated that the beneficial residual

compressive stresses created by carburizing and subsequent heat-treatment

would act to improve rolling contact fatigue, as would the reduction in the

size and quantity of insoluble carbides normally found in the high-carbon AMS

5749.

Development efforts were not successful in achieving the above goals. It

was recognized at the outset that the high Cr content posed a severe problem

to carburization. While this was and is a major problem, some of the car-

burizing cycles did result in acceptable microstructures or case hardnesses.

The operational word here is "or," since the necessary combination of good

microstructure (such as relatively small, well dispersed carbides, with no

network or agglomeration) and adequate hardness (> R 58 minimum) was not
attained, c

Initially, only the carbon level was reduced, resulting in a low carbon

AMS 5749. It was quickly evident that this chemistry was totally unsuitable

for carburizing, the main problem being one of uncontrollable and massive

amounts of retained austenite.

A successful portion of this initial effort was the development and

demonstration of a modified corrosion test Cbased on a USN procedure) which

provided useful data on the relative corrosion characteristics of AMS 5749,

AISI M50, and 52100 bearing steels.

The second alloy modification consisted of adding approximately 3% by

weight nickel, the intent being to help reduce the retained austenite levels.

This modification resulted in considerably improved structures and hardness

levels and generally more repetitive results. Still, the ideal combination of
microstructure and hardness was not achieved.

A final attempt at achieving a fracture-tough, inherently corrosion-

resistant material was made by evaluating a number of lower chromium (8_ to

12_ weight), low carbon alloys. Again, the results were mixed. While it was

shown that the lower Cr alloys had good inherent corrosion characteristics

(compared to M50), the desired microstructure and hardness combination was

still not attained.
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2.0 INTRODUCTION

This program was launched with the intent of providing a corrosion resis-

tant, high fracture toughness bearing material for advanced jet engine and

other critical applications.

Corrosion of aerospace bearings is a serious and expensive problem: it

is most severe in systems with long periods of nonuse. A summary of causes

for bearing rejection at a U.S. Navy facility shows that corrosion accounts

for nearly one-third of the bearing rejections from their aircraft systems,

including drive lines, wheels, and accessories (Reference I). Air Force

experience confirms that corrosion is a major cause of rejection at overhaul

of aircraft turbine engine bearings (Reference 2).

Cryogenic turbopump bearings in current and future rocket engines, such

as the space shuttle main engine, also require the use of corrosion resistant

bearings. AISI 440C is currently used for bearings in cryogenic applications.

Its hardness, fatigue life, and load capacity make AISI 440C a marginal

material for future cryogenic turbopump bearings and also inadequate for tur-

bine-engine main-shaft bearings. A significant mechanism of corrosion in

aircraft engine bearings was defined (References 3 and 4) as a result of

observations from Naval fleet aircraft bearings. It was concluded that the

corrosion responsible for bearing rejections was caused by cyclic temperatures

and lengthy static periods frequently experienced by aircraft in the field.

The temperature of the lubricant in these engines can cycle from 508 K

(455 ° F) during operation to 233 K (-40 ° F) during inactive periods in cold

climates. Moisture-laden air can get into the lubrication system in humid

environments, during rain, or during aircraft water wash; moisture can con-

dense on bearing components during inactive periods. Additionally, it was

found (References 3 and 4) that up to 3 ppm of chloride ion (most likely from

sea water) was contained in the lubricant. Observations of rejected bearings

showed that the corrosion was concentrated at the crevice formed by the con-

tacts of the balls or rollers and the raceways. The lubricant and condensate

containing the chloride ion settled in this area and crevice corrosion

occurred. The presence of chloride ions accelerates corrosion (Reference 5).

Although these observations were limited to bearings in Naval aircraft,

it is likely that a similar mechanism occurs in other aircraft and aerospace

bearings rejected for corrosion. If the corrosion pits are of significant

size, they can act as initiation sites for fatigue spalling, thereby shorten-

ing bearing life.

The corrosion problem is being attacked on three major fronts: corro-

sion-resistant materials, corrosion-resistant coatings or surface modifica-

tions, and corrosion-inhibited lubricants. Materials such as AISI 440C, AMS

5900, and AMS 5749 are called corrosion-resistant or stainless steels; how-

ever, under some severe environmental conditions in aircraft bearings, corro-

sion will occur. Nevertheless, they are significantly more corrosion-

resistant than common aircraft bearing materials like AISI M50, AISI 52100,

and the commonly used case-carburized materials. Ceramics like silicon

nitride are truly corrosion-resistant in an aircraft environment. Although

2



this material is not yet well developed for widespread aircraft application,

it could be applied in some specific cases.

Chromium-ion implantation has shown significant improvement in the corro-

sion resistance of AlSl M50 (Reference 6). Other surface modifications or

coatings may also provide similar benefits, but more work is needed in this

area. It is probable that a combination of approaches, such as the use of

silicon nitride balls or rollers and coated raceways, may be a workable solu-

tion for some applications requiring long periods of nonuse.

Currently, the lubricant provides some measure of corrosion protection in

aircraft bearings simply by keeping the components coated and moisture free.

Corrosion-inhibiting additives for the commonly used MIL-L-23699 lubricant

have shown promise in laboratory tests (References 3 and 4), and confirmation

of the degree of improved corrosion resistance in actual aircraft systems is

underway.

Such steels as AMS 5749 and AMS 5900 combine the tempering, hot hardness,

and hardness-retention characteristics of AISI M50 steel with the corrosion

and oxidation resistance of AISI 440C stainless steel. The typical chemical

compositions of these materials are shown in Table I. For improved corrosion

and wear resistance, AMS 5749 and AMS 5900 steels contain higher percentages
of carbon and chromium than AISI M50. Their hot hardness and hardness reten-

tion are better than AISI 440C and similar to AISI M50 (Reference 7).

Table i. Chemical Compositions of Test Materials.

C Mn Si Cr Mo V Ni S P

CEVM 1.04 0.34 0.30 1.46 0.03 .... 0.04 0.003 0.008

AISI 52100

VIM-VAR 0.82 0.28 0.24 4.20 4.16 1.01 0.08 0.002 0.007

AISI M50

VIM-VAR I.ii 0.17 0.30 13.92 3.87 1.15 0.01 0.003 0.003

AMS 5749

AMS 5749 and AMS 5900 showed excellent life in several accelerated

rolling-element fatigue studies (References 7 to I0). These materials were

double vacuum-melted (VIM-VAR for vacuum induction melt-vacuum arc remelt) and

showed lives equal to or greater than VIM-VAR AISI M50 in similar tests.

These life results are significant because they show that a corrosion-

resistant material that could potentially replace AISI M50 in some aircraft

bearing applications would be expected to have at least equivalent lives.



The need for high fracture toughness bearings has been discussed in

detail in References II and 12. Materials like General Electric's MSONiL have

adequately solved this problem, but without improving corrosion resistance.

MSONiL is derived from AISI M50 and, having the same chromium and molybdenum

content, has the same corrosion characteristics. To achieve an inherently

corrosion-resistant material, a high chromium content steel, such as the 14Cr

AMS 5749, needs to be considered. The major objective of this program was to

link the corrosion resistance of a 14Cr steel with the high fracture resis-

tance possible with a case-carburized material. A second objective was to
evaluate the corrosion resistance of AMS 5749 relative to AISI MS0 and AISI

52100.

The first efforts were focused on a reduced carbon level AMS 5749

material. A second alloy modification consisted of adding a small amount of

nickel; a third development attempt involved the evaluation of several lower

chrome (<14%), low carbon alloys. Most of these materials were subjected to

the corrosion test procedures developed as part of this program. The'results

of these investigations and evaluations are discussed in the following sections

of this report.



3.0 MATERIAL DEVELOPMENT RESULTS AND DISCUSSION

The corrosion test procedures and results will be discussed first, fol-

lowed by the material development and modification program.

3.1 CORROSION TESTING

The extent of corrosion resistance improvement of the 14Cr materials over

the more common aircraft bearing materials like AlSl MSO and AISI 52100 has

not been well documented or published. Consequently, at the outset of the

current program it was decided to establish a corrosion test procedure to
obtain baseline data relative to the corrosion characteristics of AMS 5749 and

such materials as AISI H50 and 52100. In addition, corrosion tests were per-

formed on the low carbon and nickel modified versions of the AMS 5749, as well

as some of the experimental alloys evaluated in the latter stages of this

program.

The corrosion test selected was similar to the one described in Reference

3. This procedure, as developed by the Navy, has been proven to provide a

realistic assessment of the relative corrosion characteristics of bearing and

gear materials. It should be noted that the initial baseline corrosion tests

(those with through-hardened AMS 5749, MS0, and 52100) have been reported in

Reference 13.

The evaluation was performed by conducting a series of corrosion tests

with specimens fabricated to simulate crevice corrosion in the presence of a

specially prepared lubricant-chloride solution and exposed to thermal cycling.

3.1.1 Test Materials

The chemical composition of the materials used in these tests was given

in Table I. Thirteen mm (0.5 in) diameter bar stock was heat treated to

obtain a nominal Rockwell C hardness of 62. The specific heat treat cycles

are described in Table 2. Cylindrical bars 76.2 mm (3.0 in) long and 9.5 mm

(0.375 in) in diameter were then ground from the heat treated rods. Half of

the test bars were machined with saddles as shown in Figure I with a radius

slightly greater than the bar radius. This saddle provides a contact and

crevice situation to simulate the contact of a ball or roller and a bearing

raceway. Both the cylindrical and the saddle surfaces were ground to a finish

of 0.15 _m (6 _in).

The lubricant used for the corrosion tests consisted of MIL-L-23699 type

lubricant to which was added 3 ppm by weight of chlorides (supplied as ASTM

D665 synthetic seawater). The water content of the lubricant solution was

then adjusted to 600 ppm by weight by the addition of distilled water.
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Table 2. Heat Treatment of Test Materials.

Heat Material

Treatment AISI 52100 AISI H50 AMS 5749

Preheat

Austenitize

Quench

Temper

Deep Freeze

Temper

No ne

1116 K (1550 ° F)

in Salt

327 K (130 ° F)

Oil, Air Cool to

Room Temperature

450 Z (350° F)
for 2 Hours

200 K (-I00 ° F)

for 2 Hours

450 K (350 ° F)

for 2 Hours

1089 K (1500 ° F)

in Salt

1380 K (2025 ° F)

in Salt

839 K (1050 ° F)

in Salt, Air Cool

to Room Temperature

797 K (975 ° F)

for 2 Hours

200 K (-100 ° F)
for 2 Hours

797 K (975 ° F)
for 2 Hours

1089 K (1500 ° F)

in Salt

1394 K (2050 ° F)

in Salt

866 K (II00 ° F)

in Salt, Air Cool

to Room Temperature

811K (I000 ° F)

for 2 Hours

200 K (-I00 ° F)

for 2 Hours

811K (1000 ° F)
for 2 Hours

3.1.2 Corrosion Test Procedure

The procedure used for these corrosion tests was similar to that used in

Reference 3. The test bars of each material were cleaned by successively

washing in separate baths of toluene, ethanol, hexane, and acetone. Afterward,

the bars were handled only by rubber-gloved hands and were air-dried at room

temperature. Next, the bars were immersed for 1 hour in the lubricant-chloride

solution. During exposure, they were periodically rotated. The bars were

removed and drained for 30 minutes at room temperature.

Subsequently, the bars were placed in a special fixture, shown schemati-

cally in Figure 2 and photographically in Figure 3, with the lower two bars

having the saddle and the mating two bars placed across the saddles. This

arrangement produces a contact and crevice situation similar to that in a ball

or roller bearing, and it provides the opportunity for crevice corrosion to

occur. The fixture is made of polyethylene material; it is clamped together

and suspended in a large beaker which is loosely covered with aluminum foil.

This assembly is called the corrosion cell and is cycled alternately between a

339 K (150 ° F) oven and a 276 K (37 ° F) refrigerator. Total exposure is 14

cycles, each cycle consisting of 8 hours in the oven and 16 hours in the

refrigerator. Corrosion cells were assembled with each of the three materials.
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After completing the exposure, the bars were removed, cleaned with an

alkaline solution in an ultrasonic cleaner, and photographed. Typical corro-

sion sites were examined metallographically to determine corrosion character-

istics.

3.1.3 Corrosion Test Results

After the 14 thermal cycles were completed, the test bars were cleaned

and examined. Visual inspection revealed that the AISI M50 and AISI 52100 had

extensive corrosion damage. A slight amount of corrosion was present on the

AMS 5749 bars. As shown in Figures 4 through 6, corrosion was not limited to

crevice corrosion, but pitting corrosion also occurred on exposed surfaces of

both materials. The slight amount of corrosion on the AMS 5749 bars appeared

to be limited to the saddle area where a minimal amount of crevice corrosion

occurred (see Figure 6).

For a detailed examination of the corrosion damage, scanning electron

microscopy was employed. Typical corrosion areas are shown in Figures 7

through 9. In general, there was no significant difference between the

corrosion in the crevice areas and that on the exposed surfaces for M50 and

52100. Differences were noted between the appearance of the AISI M50 and the

AlSl 52100. The corrosion on AISI 52100 appeared to cover more surface area,

but the corrosion pits on the AlSl M50 bars seemed to be deeper. This is not

readily apparent in Figures 7 and 8, although sectioning of test bars of both

materials through typical corrosion pits provided a clear distinction.

Optical photomicrographs of the sections through the pits are shown in

Figures I0 and II. The greater depths of the AlSl M50 corrosion pits are

apparent by comparing these photos. This observation agrees with those of

Reference 14 which discusses this effect in bearings removed from service.

Corrosion pitting on the AMS 5749 was limited in area and only in the

crevice area near the edge of the saddle. These few pits were very shallow,

as shown in Figure 12.

The pits shown in Figures I0 through 12 are typical of the deepest pits

observed in each material. These pits had depths of approximately 120, 70,

and 20 _m (0.005, 0.003, and 0.0008 inch) in the AISI M_50, AISI 52100, and AMS

5749, respectively. Pits in a bearing raceway surface are detrimental, because

they are likely initiation sites for rolling-element fatigue cracks and subse-

quent spalling. Thus, the corrosion observed in these specimens would tend to

reduce rolling-element fatigue life in AISI M50 more than in either AISI 52100

or AMS 5749.

Corrosion tests identical to those described for the standard through-

hardened AMS 5749 were performed on the low carbon and low carbon, nickel
added versions of this material (see Sections 3.2 and 3.3). The results were

essentially the same in that the modified AMS 5749 exhibited the same excel-

lent corrosion resistance as did the nonmodified high-carbon material.
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Figure 4. AISI 52100 Test Bars After Corrosion Test.
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Figure 5. AISI M50 Test Bars After Corrosion Test.
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Figure 6. AMS 5749 Test Bars After Corrosion Test.
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Figure 7. SEMPhotograph of 52100 Test Bar After
Corrosion Test.
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Figure 8. SEM Photograph of M50 Test Bar After

Corrosion Test.
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Figure 9. SEM Photograph of AMS 5749 Test Bar After

Corrosion Test.

16



ORIGINAL PAGE "1S

OF POOR QUALITY

200X

Figure i0.

200X

Cross Section Through Typical Corrosion

Pits on 52100.
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Figure ii.

200X

Cross Section Through Typical Corrosion Pits
on M50.
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Figure 12. Cross Section Through AMS 5749 Corrosion Test

Bar (Note Absence of Corrosion Damage).
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A third corrosion test series was performed later in the program when the

lower Cr experimental alloys were being evaluated. The results of those tests
are discussed in Section 3.4.

3.2 MODIFIED AMS 5749

The original intent of the program was to evaluate a low carbon version

of AMS 5749 with the objective of achieving a corrosion resistant carburizing

grade bearing alloy. Working with the Latrobe Steel Co., a low carbon AMS

5749 laboratory size [139 mm (5.5 inch) diameter by 457 mm (18 inch) long]

ingot was double vacuum melted (VIM-VAR). This ingot had the following chemi-

cal composition compared with the standard AMS 5749:

Low

Carbon 5749

Std 5749

C Mn Si Cr Mo V S P

0.10 0.33 0.30 14.48 3.95 1.17 0.004 0.003

1.15 0.50 0.30 14.50 4.00 1.20 ......

The ingot was reduced to 70 mm (2.75 inch) round corner square bar, as

well as 13 ,_n (0.5 inch) diameter rod.

A number of trial carburizing and heat treat studies were performed on

this material using both gas and vacuum carburizing. None of these treatments

resulted in acceptable case microstructures or case hardness levels. Massive
amounts of retained austenite were encountered which could not be reduced to

an acceptable level and precluded achieving a realistic case hardness (>R
C

58). In addition, excessive grain growth was observed in the low carbon core.

In view of the inability to properly carburize the low carbon AMS 5749,

it was decided to further modify the chemistry by incorporating a small amount

(~3_ by weight) of nickel. The addition of this element successfully worked

in the modification of AISI M50, where it acted to repress the retained aus-

tenite formation. This was done, and the results of this modification are

discussed in Section 3.3.

3.3 LOW CARBON_ NICKEL MODIFIED AMS 5749

The inability to achieve a minimum case hardness of R 58, a reasonable
core hardness (_R 40) or an acceptable microstructure wit_ the low carbon

version of AMS 57_9, led to further alloy modifications in an attempt to

achieve the above. Working with the Latrobe Steel Co., four laboratory size

heats [29.5 kg (~65 ib)] containing 3% nickel were melted. The nickel was

added for austenite stabilization and to reduce the high levels of retained

austenite noted in the low carbon AMS 5749. The specific chemical analysis of

the four heats is given in Table 3. The carbon levels were varied from 0.I_

to 0.3_ to permit evaluation of the effect of this on core hardenability.
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Table 3. Chemical Analysis of Low Carbon, Nickel AddedAMS5749.

Lab Heat
No. C Mn

Y66
Y67
Y69
Y70

0.130
0.208
0.205
0.313

Si Ni

0.33 0.32 3.05
0.34 0.35 3.12
0.25 0.28 3.20
0.25 0.24 3.11

*(ND = NoneDetected)

Cr Mo

14.32 3.75
14.42 3.62
14.65 3.98
14.61 3.48

*Used for Evaluation

V S

1.39 0.006
1.26 0.005
1.22 0.005
1.22 0.005

F

ND_
ND
ND
ND

A series of heat treat studies were performed initially to establish the
core hardenability with the three carbon levels. Specifically, the 0.I and
0.3 carbon levels were evaluated. Hardness as a function of austenization and
tempering temperature was determined; the results are given in Figures 13 and
14. The effect of austenitizing temperature on the hardness response of the
0.1% carbon material was considerably less than that for the 0.3% carbon
material. Varying the tempering temperature between 589 K and 811K (600° and
I000° F) did not appear to have a significant effect on either material.
Typical microstructures of the 0.I_, 0.2_, and 0.3_ carbon materials are shown
in Figures 15 and 16. As expected, the percentage of ferrite decreases with
increasing carbon level. A preliminary carburizing study using the 0.1% car-
bon material showeda significant increase in ability to diffuse carbon when
comparedto the non-nickel, modified low carbon material. This is shown in
Figure 17, which presents the results of carbon analysis on the two materials
after a carburizing cycle.

Short-rod fracture toughness tests were performed on the core of the 0.2%
and 0.3_ carbon, nickel modified materials; the results of these showedthat
the fracture toughness was well above the desired 33 Mpa • m ½ (30 ksi din.)
range. The specific values were:

Carbon content MPa • _ _IC (ksi •iVY.)

0.205 61, 55 55.0, 50.2

0.313 48, 40 43.7, 36.5

Retained austenite measurements were also made on several bars (0.1%

carbon level) carburized for rather lengthy periods of time (48 and 72

hours). The results shown in Figure 18, indicated that a relatively low
retained austenite content could be attained with the nickel modified

material.
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r-4

O
m_

_3

N

<

40

35

30

25

20

Tempering Temperature

589K 644K 700K 755K 811K

(600 ° F) (700 ° F) (800 ° F) (900 ° F) (i000 ° F)

26.8* 27.3 27.8 27.3 27.1
1255K

(1800 ° F)

1310K

(1900 ° F)

1366K

(2000 ° F)

( 1394K2050 ° F)

27.9 28.3 28°9 29.1 28.5

29.0 29.6 31.3 31.7 29.6

29.5 30.0 30.6 31.3 30.2

* Hardness In Rockwell C

1366K _ _ (2000 ° F)
-1394K_(2050 ° F)

1310K " "O ----O----(1900 ° F)

-1255K-- (1800 ° F

589K 644K 700K 755K 811K 866

(600 ° F) (700 ° F) (800 ° F) (900 ° F) (i000 ° F] (ii00 ° F)

Tempering Temperature

Figure 13. Hardness Versus Tempering Temperature for Low Carbon AMS 5749 +

Nickel Austenitized at Various Temperatures: Carbon Content 0.13%

(Heat Y66).
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Tempering Temperature

t_

G.

_0

N

4J

1255K

(1800 ° F)

1310K

(1900 ° F)

1366K

(2000 ° F)

1394K

(2050 ° F)

1422K

(2100 ° F)

As 589K 644K 700K 755K 795K 811K

Quenched (600 ° F) (700 ° F) (800 ° F) (900 = F) (975 ° F) (i000 ° F)

36.0* 36.8 35.9 36.2 36.5 -- 35.1

41.8 40.8 41.4 42.6 42.8 -- 40.1

43.7 41.8 42.5 43.8 43.9 -- 41.5

46.5 42.9 43.0 44.7 45.7 46.9 43.9

49.6 46.4 47.4 48.2 49.0 -- 46.1

* Hardness in Rockwell C

45

589K 644K
As

Quenched (600° F) (700 ° F)

700K

(800 = F)

1422K

_-(2100 ° F)

--1394K --

_'(2050 ° F)

_'---1366K__

000 ° F)
1310K

900 ° F)--
1255K

(1800 ° F_

755K 811K 866K

(9000 F) (i000 ° F) (ii00 ° F)

Tempering Temperature

Figure 14. Hardness Versus Tempering Temperature for Low Carbon AMS 5749 +

Nickel Austenitized at Various Temperatures: Carbon Content

0.313% (Heat Y70).
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0.130% C 100X 0.205% IOOX

0.313% 100X

Figure 15. Typical Microstructure Low Carbon + Nickel Added AMS 5749;

Austenitized at 1394 K (2050 ° F); Oil Quenched; Subzero/

Cool at 200 K (-i00 ° F); Double Temper 2+2 Hours at

797 K (975 ° F); Etchant, 3% Nital.
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500X 0.205% 500X

0.313% 500X

Figure 16. Typical Microstructure Low Carbon + Nickel Added AMS 5749;

Austenltlzed at 1394 K (2050 ° F); Oll Quenched; Subzero/

Cool at 200 K (-i00 ° F); Double Temper 2+2 Hours at

797 K (975 ° F); Etchant, 3% Nltal.
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0

i0

Depth, inches

0.010 0.020 0.030 0.040 0.050

_J

6
<

-rq

4

m_

o 2
>

Specimen iO----O(Carburized 48 Hours)

Specimen 7_---_(Carburized 72 Hours)

00 0.254 0.508 0.762 1.016 1.270

Depth, mm

Figure 18. Subsurface Volume Percent Retained Austenite Distribut-

ion, Carburized Nickel Modified Low Carbon AMS 5749.
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In view of these initial encouraging results, a comprehensive evaluation

program was started to establish a viable carburization cycle for this

material. A total of 184 carburizing and heat treat cycles were performed.

The results of these were evaluated using metallographic and microhardness

measurements techniques as well as carbon analysis. None of these resulted in

what was considered an adequate combination of case and core structure and

hardness. Consequently, it is not _onsidered useful or beneficial to review

all of these in detail. Therefore, in _he following section an overview is

given to indicate representative sfruct_res and hardness ranges encountered

during this evaluation.

The three carbon levels given in Table 3 were evaluated. As a point of

reference, Figure 19 shows the microstructure of standard AMS 5749, heat-

treated as indicated to provide a hardness of R 61. The structure is charac-

terized by a martensitic matrix with large insoluble carbides. By contrast,

Figures 20 through 22 show the microstructure of similarly hardened nickel

modified, low carbon AMS 5749. The structure is a combination of low carbon

martensite and ferrite, ranging in hardness from R 35 for the 0.1% carbon
c

material to R 42 for the 0.3% carbon material.
c

Using the carburizing cycle shown in Table 4, a case hardness in excess

of R 65 could be achieved in the nickel modified, low carbon AMS 5749 (Table

5). Cpredictably, the structure of the case showed the massive carbide agglom-

eration illustrated in Figure 23 and considered totally unsuitable for a bear-

ing application. This massive carbide formation was encountered regardless of

carburizing temperatures [1172 K to 1228 K (1650 ° to 1750 ° F)] when the parts

were slow cooled after carburizing. Oil quenching after carburization reduced

the carbide mass but also tended to lower the case hardness to around R 56 to

58, with a core hardness of about R 30 to 33. Table 6 is another typical

carburizing cycle used in this phase of the evaluation. A typical case struc-

ture for oil-quenched samples is shown in Figure 24 with matching hardness

profiles given in Table 7.

Earlier carburizing trials had been made using lower carbon potentials

(_O.5 to 0.6%) in order to reduce the rapid and massive buildup of carbide.

These attenrpts, while achieving a smaller carbide mass, failed to generate

adequate hardness levels. However, because of the inability to achieve a

desirable case-core structure and hardness combination using the higher carbon

potentials, it was decided to try to establish the best possible combination

which could be achieved at this time. The microstructures in Figures 25

through 33 illustrate the results of this study. As can be seen, the case

structures were greatly improved over those generated with the higher carbon

potential levels, although hardness still peaked at or near R 58. Generally,
c

the core structure was a rather even mix of martensite and ferrite which,

according to Reference 15, would impair fracture toughness. It was notable

that in some samples the case structures showed a carbide morphology superior

to that seen in the standard, through hardened AMS 5749. In particular, the

structure in Figure 26 is cited. In all carburizing cycles represented by

this latter series of photomicrographs', a boost-diffuse cycle was used, appar-

ently with good results.
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Austenitized at 1339 K (1950 ° F)

866K (Ii00 ° F) Oil Quench

Air Cooled to R.T.

Temper: 755K (900 ° F)/2 hours

200K (- i00 ° F)/I hour

755K (900 ° F)/2 hours

Hardness: Rc 61
Etchant: Mod. Picral

500X

Figure 19. Microstructure of AMS 5749.
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lOOX

500X

Figure 20. Microstructure of Nickel Modified, Low Carbon

(0.13%) AMS 5749: Austenitized at 1366K

(2000 ° F); Temper 811 K (i000 ° F) 2+2 Hours;

Hardness Rc 35; Etchant Mod. Picral.
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IOOX

500X

Figure 21. Microstructure of Nickel Modified, Low

Carbon (0.208%) AMS 5749: Austenitized

at 1366 K (2000 ° F); Temper 811 K

(i000 ° F) 2+2 Hours; Hardness Rc40;

Etchant Mod. Picral.
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IOOX

500X

Figure 22. Microstructure of Nickel Modified, Low

Carbon (0.313%) AMS 5749: Austenitized

at 1366 K (2000 ° F); Temper 811 K

(i000 ° F) 2+2 Hours; Hardness Rc42;

Etchant Mod. Picral.
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Table 4.

• Preoxidize:

• Carburize:

• Preheat:

• Austenitize:

• Temper:

• Deep Freeze:

• Temper:

Carburizing and Hardening Cycle for 0.1%

Carbon, Nickel Modified AMS 5749.

1228 K (1750 ° F) for 1 Hour in Air

1366 K (1700 ° F) for 12 Hours

Carbon Potential = 1.0_ for 9 Hours,
0.95_ for 3 Hours

Furnace Cool to 1061K (I450" F) in

30 Minutes, Air Cool to Room Temperature

1200 K (1700 ° F) for 1 Hour

1339 K (1950 ° F) for 5 Minutes in Salt

Quench into 866 K (1100 ° F) Salt,

Hold for 15 Minutes, Air Cool to

Room Temperature

839 K (1050 ° F) 2 Hours

200 K (-I00 ° F) I Hour

839 K (1050 ° F) 2 Hours

Table 5. Hardness Profile in Nickel

Modified, Low Carbon AHS

5749 Carburized Per Cycle

Shown in Table 4.

Depth
Below Surface

,m (in.)

0.051 0.002

0.102 0.004

0.152 0.006

0.203 O.O08
0.254 0.010

0.381 0.015

0.508 0.020

0.635 0.025
0.762 0.030

1.016 0.040
1.270 0.050

1.524 0.060

2.032 0.080

2.540 0.100

Hardness

R*
c

64
64
67
65
66
63
58
54
52
45
42
38
37
37

*Converted From 500 Gram Knoop
Microhardness
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Figure 23. Case Microstructure of Nickel

Modified, Low Carbon AMS 5749

After Carburizing According

to Table 4.
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O. 10% C
Etchant: Mod. Picral

100X

0.20% C
Etchant: Mod. Picral

100X

Figure 24. Typical Case Struc=ure of Nickel

Modified, Low Carbon AMS 5749,

Carburized Per Cycle Shown in

Table 6.
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Table 6. Carburizing Cycle for Nickel Modified, Low

Carbon AMS 5749 (Oil Quenched).

• Preoxidize:

• Preheated:

• Carburized:

• Preheat:

• Austenitize:

• Temper:

• Deep Freeze:

• Temper:

1228 K (1750 ° F) for 2 Hours in Air

1200 K (1700" F) for I Hour

1200 K (1700 ° Y) for 12 Hours

Carbon Potential = I_ for 9 Hours

= 0.95_ for 3 Hours

Oil Quench Into 366 K (200 ° F) Oil

Air Cool to Room Temperature

1200 K (1770 ° F) 1 Hour

1394 K (2050 ° F) for 15 Hinutes

Furnace Cool to 855 K (1100 ° F)
Air Cool to Room Temperature

797 K (975 ° F) for 2 Hours

200 K (-100 ° F) for I Hour

797 K (975 ° F) for 2 Hours

Table 7. Hardness Profile of Nickel Added, Low

Carbon AMS 5749 Carburized Per Cycle

Shown in Table 6.

Depth
Below 0.10 Carbon 0.20 Carbon

Sur face Hardness Hardness

m

0.051

0. 102

0.152

0.203
O. 254

0.381

0.508

O. 635

0.762

0.889

1.016

1.270
I. 524

1.778

2.032
2.286
2.540

(in) Rc*

0.002 55

0.004 57
0.006 56
0.008 56
0.010 57
0.015 56

0.020 55

0.025 55

0.030 53

0.035 48

0.040 39

0.050 32

0.060 34

0.070 33
0.080 30

0.090 32

0.I00 32

Rc*

52

55

56

57
56

55

53
53
48

35

35
33

29
34

36

33

*Converted From 500 Gram Knoop Hicrobardness
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P(x Oum.rrY

A

:o

Case

500X

Core

• !

500XB

Etchant: Mod. Picral

Figure 25. Structure of Nickel Modified, Low Carbon ANS 5749; A = 0.1%

Carbon Carburized at 1200 K (1700 ° F) 9 Hour CP = 1.0_,
6 Hour CP = 0.7_: B - 0.I_ Carbon Carburized at 1200 K

(1700 ° F) 12 Hour CP = 0.7_: A&B Austenitized at 1353 K

(1975 ° F), Tempered at 839 K (1050 ° F) 2+2 Hours; Etchant
Mod. Picral.
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Etchant: Mod. Picral 500X

Case (Hardness = R c 58)

Etchant: Mod. Picral 500X

Core (Hardness = R c 36)

Figure 26. Structure of Nickel Modified, Low Carbon (0.1%) AMS 5749:

Carburized 48 Hours at 1228 K (1750 ° F); CP = 0.8% for 6

Hours, 0.5% for 42 Hours; Austenitized at 1339 K (1950 ° F);

Salt Quenched; Tempered 783 K (950 ° F) 2+2 Hours.
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Etchant: Mod. Picral 500X Etchant: Mod. Picral

Case (Hardness = Rc 55) Core (Hardness = Rc 36)

500X

Figure 27. Structure of Nickel Modified, Low Carbon (0.2%) AMS 5749:

Carburized 4_Hours at 1228 K (1750 ° F); CP = 0.8% for 6

Hours, O.5% for 42 Hours; Austenitized at 1339 K (1950 ° F),

Salt Quenched, Tempered 783 K (950 ° F) 2+2 Hours.
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l

Etchant: Mod. Picral 500X

Case (Hardness = R c 53)

Etchant: Mod. Picral 500X

Core (Hardness = R c 36)

Figure 28. Structure of Nickel Modified Low Carbon (0.2%) AMS 5749:

Carburized 48 Hours at 1200 K (1700 ° F); CP = 0.8% for 6

Hours, 0.5% for 42 Hours; Austenitized at 1339 K (1959 ° F);

Oil Quenched, Tempered 783 K (950 ° F) 2+2 Hours.
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Etchant: Mod. Picral 500X

Case (Hardness = Rc 63)

Etchant: Mod. Picral

Core (Hardness Rc 35)

500X

Figure 29. Structure of Nickel Modified Low Carbon (0.1%) AMS 5749:

Carburized 72 Hours at 1228 K (1750 ° F); CP = 0.8% for 6

Hours, 0.5% for 66 Hours; Austenitized at 1339 K (1950 ° F);

Salt Quenched; Tempered 783 K (950 ° F) 2+2 Hours.
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Etchant: Mod. Picral 500X

Case (Hardness = R c 62)

Etchant: Mod. Picral 500X

Core (Hardness = R c 37)

Figure 30. Structure of Nickel Modified Low Carbon (0.2%) AMS 5749:

Carburized 72 Hours at 1228 K (1750 ° F); CP = 0.8% for 6

Hours, 0.5% for 66 Hours; Austenitized at 1339 K (1950 ° F);

Oil Quenched; Tempered 783 K (950 ° F) 2+2 Hours.
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Etchant: Mod. Picral

Case (Hardness = Rc 56)

500X Etchant: Mod. Picral

!!i !i¸i i:

500X

Core (Hardness = R c 34)

Figure 31. Structure of Nickel Modified Low Carbon (0.1%) AMS 5749:

Carburized 72 Hours at 1228 K (1750 ° F); CP = 0.8% for 6

Hours, 0.5% for 66 Hours; Austenitized 1339 K (1950 ° F);

Still-Air Cooled; Tempered 783 K (950 ° F) 2+2 Hours.
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Etchant: Mod. Picral

Case (Hardness = Rc 58)

500X Etchant: Mod. Picral

Core (Hardness = Rc

500X

28)

Figure 32. Structure of Nickel Modified Low Carbon (0.2%) AMS5749:
Carburized 72 Hours at 1228 K (1750° F); CP = 0.8% for 6

Hours, 0.5% for 66 Hours; Austenitized at 1339 K (1950 ° F);

Still-Air Cooled; Tempered 783 K (950 ° F) 2+2 Hours.
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Etchant: Mod. Picral 500X

Case (Hardness = Rc 52)

Etchant: Mod. Prical 500X

Core (Hardness = Rc 32)

Figure 33. Structure of Nickel Modified Low Carbon (0.1%) AMS 5749:

Carburlzed 72 Hours at 1228 K (1750 ° F); CP = 0.6% for 6

Hours, 0.5% for 66 Hours; Austenitized 1339 K (1950°F);

Oil Quenched; Tempered 783 K (950 ° F) 2+2 Hours.

45



Nevertheless, due to the fact that (I) case hardnesses were still consid-
ered below desirable levels and (2) concern that the required long carburizing

times would be a serious manufacturing cost and reliability problem, it was

decided to halt the effort in this area. After reviewing the results with the

NASA Project Manager, it was decided that one more alternate approach should

be explored. This led to the evaluation of several lower chromium alloys

(~14_). This effort will be discussed in the next section.

3.4 REDUCED CHROMIUM CONTENT_ LOW CARBON STEELS

Since the attempts to carburize the nickel modified, low carbon AMS 5749

did not result in the desired combination of case hardness and microstructure,

it was decided to explore an alternate approach. This consisted of reducing

the chromium content to below 14_ and adding additional molybdenum to attain

chromium equivalency in corrosion. To perform this additional effort, the

services of AMAX Metals Group Research Laboratory (formerly Climax Molybdenum

Co. of Michigan) were enlisted. The AMAX Research Laboratory (ARL) has com-

plete facilities to VIM-VAR melt small heats of material, as well as convert

these from ingot to small diameter bar. In addition, ARL has all of the

requisite analytical facilities as well as a staff of highly qualified

personnel.

ARL has considerable experience with the high chromium steels for ele-

vated temperature applications. For weldability, the carbon levels are gener-

ally kept below 0.2_, thereby automatically providing the proper carbon range

for carburized material. Based on ARL's experience, it appeared that a steel

with a nominal 12_ chromium plus nickel and molybdenum (to provide additional

corrosion protection) would provide the highest level of corrosion resistance

available in an alloy that could be carburized.

ARL conducted a preliminary carburizing study on two 12_ chromium steels

being evaluated in separate investigations. Compositions and surface hardness

data following a 7-hour carburizing cycle are shown in Table 8. Also shown

are the hardness values following a subsequent l-hour hardening treatment at

839 K (1922 ° F). Metallographic evaluation of the case microstructures indi-

cated that a large volume fraction of carbide was formed during carburizing

and that case depths were on the order of 0.5 mm (0.020 inch).

Table 8. Preliminary Carburizing Results of 12_ Chromium Steels.

Steel

6455

2808

Element, Weight Percent

C Hn Si Cr Ho Ni V

0.070 0.56 0.22 11.87 1.50 1.46 0.18

0.076 0.61 0.26 12.02 1.98 5.89 0.25

W

1.04

Carburized

Hardness,
HRC

56.8

39.5

Heat Treated

Hardness,
HRC

59.7

41.0
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Concerning the corrosion resistance of these materials, ARL's experience
indicated that corrosion characteristics are more sensitive to the final case

microstructure than to the original chromium level of the steel. Because the

chromium level in solution will govern the corrosion resistance, the final

heat treatment may therefore play a major role in determining how much chro-

mium is available to prevent corrosion. For this reason, it was decided to

use a maximum of 12% chromium for the current study. Higher chromium levels

tend to produce a ferrite/austenite structure at the carburized surface; this

could lead to chromium segregation to the ferrite phase and subsequent deteri-

oration of corrosion properties. Corrosion test results suggested that a drop

from the 14% chromium level of AMS 5749 steel to a 12% level would not dras-

tically decrease corrosion characteristics. Consequently, both ARL and GE

embarked on a survey of commercial 12% chromium steels as well as steels con-

taining an intermediate level of 8% to 12_ chromium, which might be considered

as potential candidates for the intended purpose. The matrix shown in Figure

34 was constructed to provide guidance in the selection of alloys to be melted

and investigated. Based on this analysis, the compositions shown in Table 9

were selected for melting.

Four 762 mm (30 inch) long [29.5 kg (65 Ib)] three-way split heats were

prepared as VlM-VAR material. The actual compositions of the melts are shown
in Table I0.

The ingots were forged at 1473 K (2200 ° F) into 32 mm (1.25 inch) round

bars and 13 mm (0.5 inch) round bars from which specimen blanks were cut.

These blanks were processed as follows:

I. Preoxidized for 2 hours at 1253 K (1800 ° F)

. Carburized in two groups as follows:

• 7 hours at 0.5_ carbon

• 2 hours at 0.8%, 5 hours at 0.5% carbon

The blanks were then warm oil quenched.

3. Stress relief for 2 hours at 753 K (900 ° F)

. Austenitize at 1378 K (2021 ° F) in hydrogen for I0 minutes

(warm oil quench)

, Deep freeze and temper:

• Two hours deep freeze (dry ice)

• Two hours 783 K (950 ° F)

• Two hours deep freeze

• Two hours 783 K (950 ° F)

Surface hardness values (HRC) were obtained following Steps 2, 4, and 5

for both carburizing conditions; the results are summarized in Figure 35.

Microhardness profiles obtained following Step 5 are shown in Figures 36 and
37.
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Table 9. Compositions Selected for Melting.

Steel Split Mo Ni Cr W

I

2

3

4

A

B

C

A

B
C

A

B
C

A

B

C

1.0

2.0

3.0

1.0

2.0

3.0

2.0

2.0

2.5

3.0
4.0

4.0

1.0

2.0

3.0

2.0

3.0

5.0

2.0

2.0

3.0

3.0

3.0

3.0

12.0

12.0

12.0

12.0

12.0

12.0

10.0

12.0

12.0

8.0

8.0

9.0

1.0

1.0

muo

All steels to contain 0.2% C, 0.3% Si, 0.5% Mn,

0.001% S, 0.01% N, and 0.05% AI.

Table I0. Actual Compositions of Melts.

Steel C Hn Si Mo Ni Cr W

IA

IB

IC

2A

2B

2C

3A

3B

3C

4A

4B

4C

0.19

0.19

0.19

0.19

0.19

0.19

0.20

0.20

0.20

0.19

0.19

0.19

0.50

0.50

0.50

0.50

0.50

0.50

0.51

0.51

0.51

0.48

0.48

0.48

0.32

0.32

0.32

0.33

0.33

0.33

0.32

0.32

0.32

0.31

0.31

0.31

I .00

1.94
2.81

1.02

1.96

2.71

2.03

2.03

2.34

3.02

3.92

3.92

1.00

1.98

2.86

2.05

3.02

4.54

2.04

2.04

2.90

3.04

3.04

3.04

12.22

12.22

12.22

12.09

12.09

12.09

10.22

11.84

11.84

8.17

8.17
8.96

NA

NA

NA

NA

NA

NA

NA

1.03

1.03

NA

NA

NA

f
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Based on the results shown in Figures 36 and 37 and on examination of the

microstructures following Step 5, Steels IA, IB, 2A, 2B, 3B, 3C, and 4B were

selected for further processing.

From each of these steels, rolling contact fatigue (RCF) specimens and

carbon gradient" bars were machined. Half of the RCF specimens had saddles

machined in the surface to a depth of approximately 3.3 mm (0.13 inch). All

R specimens and carbon gradient bars were processed (along with additional
c

specimens for metallography purposes) according to the schedule shown above,

but with the following exceptions:

ste£

2

4

Revised Procedure

Carburized for 14 hours at 0.5% carbon

Reaustenitized for 12 minutes at 1375 K (2015 ° F) in salt

Surface hardness values following processing are shown in Figure 38 in

comparison with the results obtained previously (7 hour carburization cycle).

Microhardness profiles with the revised procedure are shown in Figure 39.

Microstructures at a depth of approximately 0.4 mm (0.015 inch) below the

carburized surface are shown in Figure 40. These specimens were heavily

etched to illustrate the distribution and size of the carbide particles

present.

The hardness results shown in Figure 35 following various heat treating

stages indicate that, in general, the carburized and tempered hardness values

were closely related, and that in most cases the "B" composition in each steel

group had the highest tempered hardness value. The low hardness values of the

austenitized steels are assumed to be a result of the formation of retained

austenite, most of which is subsequently transformed during the tempering

operation. An example of the effect of alloying is found by comparing the

tempered hardness values of Steels IB and 3A in Figure 36. The low tempered

hardness values of the 3A composition are a result of higher retained austen-

ite related to its lower chromium content. The effect of W and Mo on tempered

hardness is illustrated in the comparison of hardness values between the A and

B steels in groups 3(W) and 4(Mo). When chromium is lowered, the addition

(or increase) of W or Mo will act to substantially increase tempered hardness
values.

The hardness profiles of the 7- and 14-hour carburizing cycle samples are

shown in Figures 35, 36, and 39. The differences between the two carburizing

processes did not seem to produce major differences in the hardness profiles.

The comparison of surface hardness values in Figure 38 also indicated

that the longer carburizing cycle did not have a consistent or major effect on

the surface hardness values of the steels used in this evaluation. The values

below 60 HRC are a result of the retained austenite present after tempering.

An examination of the microstructures indicated that the carburized zones
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(a) Steel I-A

1000X

(b) Steel I-B

1000X

Figure 40. Microstructures of Steels I-A and I-B Illustrating

Carbide Distribution at an Approximate 0.4 mm

(0.015 in.) Depth From Surface (Etchant:

Vilella's Reagent).
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Figure 40. Microstructures of Steels 2-A and 2-B Illustrating

Carbide Distribution at an Approximate 0.4 mm

(0.015 in.) Depth From Surface (Etchant:

Villella's Reagent)(Continued).
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(e) Steel 3-B
1000X

(f) Steel 3-C
IO00X

Figure 40. Microstructures of Steels 3-B and 3-C lllustrating

Carbide Distribution at an Approximate 0.4 mm

(0.015 in.) Depth From Surface (Etchant:

Vilella's Reagent) (Continued).
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Figure 40. Microstructures of Steel 4-B lllustrating Carbide

Distribution at an Approximate 0.4 mm (0.015 in.)

Depth From Surface (Etchant: Vilella's Reagent)

(Concluded).
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consisted of martensite, carbide, and retained austenite, confirming that case

portions were either austenitic or austenite plus carbide at the reaustenitiz-

ing temperature.

The microhardness profiles of the 14-hour carburized samples shown in

Figure 39 are generally deeper than those obtained after 7 hours of carburiz-

ing, and they suggest greater variety in hardening response than indicated in

Figure 38. Figure 39 indicates that Steels IA and 2A have the shallowest and

deepest hardness profiles, respectively. In contrast, Steels 3 and 4 have

similar case depths but substantially different near-surface hardness values

related to the differences in retained austenite levels. The excess retained

austenite at the surface may be an indication that the carbon potential was

higher than it needed to be.

Grain boundary carbide networks are evident to some extent; however, the

carbide morphologies observed in these steels generally appear to be not

unlike those obtained in through-hardened AHS 5749 steels.

Although there was no ferrite present in the case regions of any of the

steels, the core of Steel 4B indicated a dual phase (martensite plus ferrite)

structure following heat treating, as shown in Figure 41. The ferrite phase

was found to form in a direction parallel to the rolling direction of the bar.

In those cases where a good case structure was achieved, (that is, a

structure without excessive carbide agglomeration or grain-boundary decora-

tion), the hardness failed to meet the R 60 minimum. This was the case for
c

Alloys IA and 2B. When the desired surface hardness was attained, as in Alloy

IB, excessive case carbides were present. In the case of Alloy 3C, the low

surface hardness is apparently due to excessive amounts of retained austenite.

While the hardness levels were considered marginal, the improvement in the

overall microstructure (over that attainable with the modified AHS 5749) was

considered sufficiently promising to conduct corrosion and RCF testing.

3.4.1 Corrosion Tests

Corrosion tests were performed on Steels IA, 2A, IB, 2B, 3B, 3C, and 4B

using the procedure previously described. Each corrosion test fixture con-

sisted of four bars. These bars were:

One M50 bar - control specimen

One AMS 5749 bar - control specimen

Two development alloy bars

Figure 42 shows a typical corrosion test fixture configuration. In this

case, the combinations were as follows:

M50 versus AMS 5749

M50 versus development alloy (IA)
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AMS 5749 I-A
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Versus

I-A

I-A

Versus

I-A

Figure 42. Typical Corrosion Test Fixture Configuration.
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AMS5749 versus develoRmentalloy (IA)

Following the corrosion tests, the bars were examined and evaluated.

This consisted of a IOX examination of the bar surfaces and a documentation of

the number of corrosion pits [felt with a 0.7 m (0.03 inch) scribe] in the

cylindrical areas as well as in the saddles. A summary ranking of the cor-

rosion observations is given in Table II. It should be emphasized again that

this ranking is based on pits which can be felt with a 0.7 mm (0.03 inch)

scribe, not on what is considered "cosmetic" corrosion. These observations

indicated that most of the 12 chromium alloys had reasonably good corrosion

resistance, except for Alloy 2B which showed a relatively large number of

pits. No specific reason for this behavior has been established. Not

unexpectedly, the lowest chromium content alloy (4B) had a greater number of

corrosion pits.

Table II. Corrosion Evaluation by Pit Counts.

Saddle Cylindrical Section

Material Versus Itself Versus M50 Versus AMS 5749 No Contact

1A

2A

1B

2B

3B

3C

4B

1

0

0

1

0

0

2

0

0

0

0

0

0

1

Ranking: 0 = No Corrosion

1 = Mild, 5 pits

2 = Medium, 5 to I0 pits

3.4.2 Rolling Contact Fatisue Testing

Despite the marginal hardness levels of the 8% to 12% chromium steels, it

was decided to perform some rolling contact fatigue tests using General Elec-

tric's RC Rig (Reference 16). Test conditions were as follows:

Load: 296 kg (652 ib)

Stress: 2068 MPa (700 ksi) S
max
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Temperature:

Speed:

Lubricant:

Room Temperature Ambient

25,000 rpm (50K Stress Cycles/Minute)

HIL-L-23699

The RC rig test series was short-lived. Seven tests were performed on Alloys

3C, 3B, and 2B. The results were as follows:

Alloy C__ycles

2B 105 x 106

3C 144 x 106

3C 144 x 106

3C 144 x 106

3B 144 x 106

3B 144 x 106

3B 144 x 106

Results

Spalling

Suspension

Suspension

Suspension

Suspension

Suspenszon

Suspension

Visual examination of the running track showed significant plastic defor-

mation on all bars, thereby indicating that the hardness of these specimens

was insufficient to carry the applied load. Surface profile measurement con-

firmed this observation, as shown in Figure 43. For comparison, Figure 44

shows surface traces made on through-hardened VIM-VAR MS0 and case carburized

H5ONiL. While the running track can also be seen on the latter, the amount

of deformation is very small (-50 pm). Thus, while the bars from Alloys 3B

and 3C reached the suspension point of 144 x 106 cycles, the results are not

considered reliable. The reason is that because of plastic deformation, the

conformity between the RC roller and the test bar continually increases. This

increases the contact area and decreases the Hertzian stress, thus making the

test invalid.
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4.0 CONCLUDING REMARKS AND SUMMARY OF RESULTS

The primary objective of this program was to link the corrosion resis-

tance of a high chromium steel with the excellent fracture resistance possible

with a case-carburized material. It was recognized at the outset that this

was a difficult technical problem due mainly to the difficulty of properly

carburizing a relatively highly alloyed material. The primary objective was

not achieved despite several alloy modifications beyond those originally envi-

sioned for this effort. As pointed out in the body of the report, the major

obstacle was achieving an acceptable combination of case hardness and micro-

structure and, to a lesser degree, a good core structure. An acceptable mini-

mum case hardness was defined as HRC 58 to HRC 60. An acceptable case micro-

structure for rolling element bearing application is a structure free of mas-

sive carbide agglomerations or carbide networks and having relatively small,

well-dispersed carbides in a fully martensitic matrix.

The initial effort which consisted of reducing the AMS 5749 carbon con-

tent from about 1.1% to 0.1% did not approach the overall objective because

of the presence of excessive retained austenite in the carburized and hardened

samples. This precluded reaching even the minimum case hardness requirement.

The second iteration, consisting of adding 3_ nickel, produced some

results which were quite close to the desired combination of case hardness and

structure. Nearly 200 carburizing and heat treat cycles were performed in

this phase with the best results obtained with a boost-diffuse cycle, a rela-

tively low carbon potential (ranging from 0.5% to 0.8_), and employing a

fairly rapid quench after the austenitization cycle. In this report, only

typical examples of the results achieved are shown since it would be rather

redundant, if not numbing, to present all of the results in this study. Per-

haps the closest to achieving the desired objective were the results shown in

Figure 26. The carbides are relatively small and dispersed, and the hardness

is just _C 58. However, the core structure is an approximate 50/50 mix of

low carbon martensite and ferrite - a structure which would not be expected to

provide outstanding fracture toughness.

In the final modification, which consisted of reducing the chromium

level, the results again were promising but not to the point of fully meeting

the program objective or warranting the commitment of resources to evaluate

the materials in full-scale bearing tests.

It could be argued that the original requirements were unduly restrictive

or that some of the test conditions were too severe. Certainly, the high

Hertzian stresses imposed by the RC rig, which in turn demand a relatively

high hardness to sustain these stresses, is a severe test and in actual bear-

ing operation, where stresses are considerably lower, an Rc 58 hardness might
be adequate. However, it must be recognized that a comparlson needed to be

made with existing bearing materials which have demonstrated millions of suc-

cessful flight hours at hardness levels in the range of HRC 60-64. Any reduc-

tion in these hardness levels would make this comparison less meaningful.
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Despite the fact that the primary goals were not achieved, much useful

data have been generated regarding the feasibility of carburizing high chro-

mium steels. Additionally, the corrosion evaluation of the AHS 5749, AISI

MS0, and AISI 52100 has provided the first such direct comparison of these

materials.
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